« 数独日誌150625 | トップページ | 数独日誌150701 »

数独日誌150627

【Tachyonさん提供問題 八上GNL+XYZ SP【3】【4】】
初回は2問ともうまくクリアできました。連続クリアなるでしょうか。

八上GNL+XYZ SP【3】
130 745 620
000 602 300
000 308 004

000 137 485
050 286 070
817 954 200

900 500 000
001 400 000
076 820 040

八上GNL+XYZ SP【4】
003 050 007
270 194 000
000 030 020

012 980 700
800 060 213
007 021 598

040 010 070
000 679 000
700 040 800

|

« 数独日誌150625 | トップページ | 数独日誌150701 »

趣味」カテゴリの記事

コメント

Tachyonさんへ
今回は2数字リンクとつながるALSが少なかったので、そこからNice Loopのリンクを探すやり方では比較的簡単に見つかりました。

【3】
r2c9(1789)=8=r1c9(89)-8-r1c3(89)-9-r2c2(489)-48-[r78c2(248/28)]-2-[r89c1(235/35)]-3-r5c1(34)-4-r2c1(47)-7-r2c9

これで2数字リンクを含む8リンク構成のNice Loop with XYZ-chainが成立し、異なる数字の強リンクと弱リンクが連結してr2c9が不連続点となり、ここから弱リンクの数字である7が除外できます。

この結果、r3c7が7で確定、第9列に189の3国同盟が登場し、フィニッシュまで行けると思います。

【4】
これは2数字リンクとつながるALSがおそらく1箇所だけだったので、あっさり見つかりました。

r8c3(158)=8=r8c2(2358)=2=r9c2(23569)-2-[r9c46(235/235)]-35-r9c8(356)-6-[r14c8(468/46)]-8-r2c8(3568)=8=r2c3(568)-8-r8c3

これで2数字リンクを含む8リンク構成のNice Loop with XYZ-chain(連続タイプ)が成立します。

この結果、
8の強リンクと2の強リンクが連結しているr8c2について、この2つの数字以外の3と5が除外できます。

2の弱リンクでつながっているr9c2と[r9c46]について、この3つのマスのすべてを臨むr9c9からその数字2が除外できます。

3と5の2つの数字の弱リンクでつながっている[r9c46]とr9c8について、この3つのマスのすべてを臨むr9c2から3が、r9c239から5が除外できます。

6の弱リンクでつながっているr9c8と[r14c8]について、この3つのマスのすべてを臨むr2c8から6が除外できます。またこのリンクで使わなかった4についても、r8c8から4が除外できます。

8の弱リンクでつながっているr2c3とr8c3について、この2つのマスの両方を臨むr3c3から8が除外できます。

以上で左下ブロックに3が入るのがr78c1だけとなるので、r4c1が5で確定し、フィニッシュまでいけると思います。

投稿: ikachan | 2015年7月 2日 (木) 19時24分

Tachyonさんへ
【3】
ikachanさんとは少し違いますが1列のr34c1(267/26)と2列のr78c2(248/28)のALSを利用すると

r8c1(235)-2-[r78c3(248/28)]-48-r2c2(489)-9-r1c3(89)-8-r1c9(89)=8=r2c9(1789)=7=r3c7(1579)-7-[r34c1(267/26)]-2-r8c1

8リンクのALS Linked by Multivalueが成立し、
不連続マスr8c1から2を除外すると7ブロックの(35)の2国同盟、9列の(189)の3国同盟を経て、以降は最後までいけそうです。

【4】
この問題はリンク式の始点が違うだけで同じとなりました。

[r9c46(235/235)]-35-r9c8(356)-6-[r14c8(468/46)]-8-r2c8(3568)=8=r2c3(568)-8-r8c3(158)=8=r8c2(2358)=2=r9c2(23569)-2-[r9c46]

投稿: Sakuya | 2015年7月 3日 (金) 20時20分

ikachanさん、Sakuyaさんへ

【3】について:
お二人とも正解です。

想定のルートは、強弱を除いてikachanさんと同じで、
「r2c1(47)-7-r2c9」を「r2c1(47)=7=r2c9]とし、
r2c1(47)=7=r2c9(1789)=8=r1c9(89)-8-r1c3(89)-9-r2c2(489)-48-[r78c2(248/28)]-2-[r89c1(235/35)]-3-r5c1(34)-4-r2c1
で、r2c1から4を除外としました。

さらに、r5c1(34)-4-r2c1をr5c1(34)=4=r2c1にして、
r5c1(34)=4=r2c1(47)=7=r2c9(1789)=8=r1c9(89)-8-r1c3(89)-9-r2c2(489)-48-[r78c2(248/28)]-2-[r89c1(235/35)]-3-r5c1
で、r5c1から3を除外としても解けます。

【4】について:
想定は、左右回りと始点を除いて、お二人と全く同じです。

投稿: Tachyon | 2015年7月 4日 (土) 10時28分

コメントを書く



(ウェブ上には掲載しません)




トラックバック


この記事へのトラックバック一覧です: 数独日誌150627:

« 数独日誌150625 | トップページ | 数独日誌150701 »