数独日誌231210
【Tachyonさん提供問題【1】【2】八<XY/XY/Y>】
Tachyonさんからまたまた問題を提供していただきました。いつも本当にありがとうございます。
今回は同じタイプの8リンクの問題ということです。1リンク増えてどのくらい難易度が上がるでしょうか。
ヒント(想定):
【1】【2】どちらも不連続タイプです。
八<XY/XY/Y>【1】
040 000 002
976 800 100
021 000 000
092 300 610
060 791 208
180 006 950
230 000 486
014 603 529
650 000 371
八<XY/XY/Y>【2】
049 200 000
720 000 000
051 090 200
000 847 962
462 953 187
978 126 000
204 080 750
000 000 021
000 002 400
| 固定リンク
「趣味」カテゴリの記事
- 数独日誌241208(2024.12.08)
- 数独日誌241201(2024.12.01)
- 数独日誌241124(2024.11.24)
- 数独日誌241117(2024.11.17)
- 数独日誌241110(2024.11.10)
コメント
Tachyonさん、potさんへ
いきなり2題ともダメでした。先が危ぶまれます。
【1】
<r7c56(①⑤9/①⑤7/⑤79)>が怪しいとにらんだんですが、うまくつながりません。
【2】
r9c2(1389)=8=r8c2(389)=9=<r8c46r9c4(3④⑤67/④⑤9/3⑤67)>=7=r3cc4(3467)-7-r1c5(1367)=7=r1c8(137)=1=r2c8(1349)=9=r9c8(39)-9-r9c2
これでr9c2から9が除外できますが、クリアできないようです。
投稿: ikachan | 2023年12月14日 (木) 14時35分
ikachanさん、Tachyonさんこんばんは
【1】
1題目なのに難しい。
XY/XY/Yで有効なのはr123c5しか無くて、ここから有効なリンクも1と7しか無いのにどうしてもできない。
c5を使ってループを作るなら、r8c5から2拓マスを使って伸ばす感じなのでそこから考えると、
<r13c5(135⑥7/345⑥7)>=3=r2c5(2345)-3-r2c8(34)-4-r5c8(34)=4=r4c9(47)-4-r4c1(47)-7-r8c1(78)-8-r8c5(78)-7-<r13c5(⑥)>
r13c5の7を除外でクリアならず。2拓マスを逆の数字でリンクすると、
r2c5(2345)-4-r2c8(34)-3-r5c8(34)-4-r4c9(47)-7-r4c1(47)=7=r8c1(78)-7-r8c5(78)-8-[r69c5(24/248)]-4-r2c5
r2c5の4を除外でこれもダメ。
r7c5(157)=1=<r13c5(135⑥7/345⑥7)>=3=r2c5(2345)-3-r2c8(34)-4-r5c8(34)=4=r4c9(47)-4-r4c1(47)-7-r8c1(78)-8-r8c5(78)-7-r7c5
最初のリンクをちょっと変えるとr7c5の7で足りない。ただし、最初のループと合わせてr137c5の7を消すと2発クリアにはなった。
<r123c5(1③5⑥7/2③45/③45⑥7)>=7=r8c5(78)-7-r8c1(78)=7=r4c1(47)-7-r4c9(47)-4-r5c8(34)-3-r2c8(34)-4-r2c5(34)-3-<r123c5(③⑥)>
r7c5の7が消えていると、ようやくr123c5を使ったループが出来るんだけど、これでr13c5の145を消してもクリアできないので、一発クリアはギブアップです。
【2】
これもXY/XY/Yで有効なのはr8c46r9c4で7と9のリンクを使うしかない。
r2c8(1349)-3-[r36c8(347/34)]-7-r3c4(3467)=7=<r8c46r9c4(3④⑤67/④⑤9/3⑤67)>=9=r7c6(19)=1=r9c5(1367)-1-[r2c35(36/136)]-3-r2c8
2題目でALSはまだ、という気もするけどまずはr2c8の3でダメ。
r2c9(345689)=9=r2c8(1349)-9-r9c8(39)-3-[r36c8(347/34)]-7-r3c4(3467)=7=<r8c46r9c4(3④⑤67/④⑤9/3⑤67)>=9=r7c6(19)=1=r9c5(1367)-1-[r2c35(36/136)]-36-r2c9
さらに2数字リンクまで使ってr2c9の36もまだダメ。
[r2c35(36/136)]-1-r2c8(1349)-349-[r369c8(347/34/39)]-7-r3c4(3467)=7=<r8c46r9c4(3④⑤67/④⑤9/3⑤67)>=9=r7c6(19)=1=r9c5(1367)-1-[r2c35(36/136)]
3数字リンクまで使うとこんなループ、両端はALSでなくて良くr2c5の1を除外でクリアだった。
流石にこんなのが想定のはず無いので、単純なループを探して見つけたのが下の8リンクです。
r2c5(136)-1-r2c8(1349)=1=r1c8(137)=7=r3c8(347)-7-r3c4(3467)=7=<r8c46r9c4(3④⑤67/④⑤9/3⑤67)>=9=r7c6(19)=1=r9c5(1367)-1-r2c5
投稿: pot | 2023年12月14日 (木) 21時37分
申し訳ございません。
【1】は、<XY/XY/Y>型ではなく、<X/XY/Y>型の問題でした。
お詫びいたします。
詳しくは日曜日に解説いたします。m(_ _)m
投稿: Tachyon | 2023年12月16日 (土) 09時30分
ikachanさん、potさんへ
【1】について:
申し訳ございません。これは<XY/XY/Y>型では、一発では解けない問題でした。改めてお詫び致します。m(_ _)m
potさんので正解です。
想定は、<r137c5①⑥>を、<X/XY/Y>型なのに、<XY/XY/Y>型だと思い込み:
r2c8(34)=4=r5c8(34)-4-r5c1(345)=4=r4c1(47)=7=r8c1(78)-7-r8c5(78)=7=<r137c(①35⑥7/345⑥7/①57)>=3=r2c5(2345)-3-r2c8
で、r2c8から3を除外としました。
なお、ルートは同じで不連続マスが違う以下の手筋でも解けます。
・r5c8-4-r5c1=4=r4c1=7=r8c1-7-r8c5=7=<r137c5①⑥>=3=r2c5-3-r2c8=3=r5c8
・r5c1=4=r4c1=7=r8c1-7-r8c5=7=<r137c5①⑥>=3=r2c5-3-r2c8=3=r5c8=4=r5c1
・r4c1=7=r8c1-7-r8c5=7=<r137c5①⑥>=3=r2c5-3-r2c8=3=r5c8=4=r5c1-4-r4c1
・r8c1-7-r8c5=7=<r137c5①⑥>=3=r2c5-3-r2c8=3=r5c8=4=r5c1-4-r4c1-7-r8c1
さらにr5c1の代わりにr4c9を使っても解けます。
【2】について:
解決には至りませんでしたが、ikachanさんの手筋に問題はありません。
potさんので文句なく正解です。
想定もpotさんと全く同じです。
ヒント(想定):
【3】【4】ともにミニブロックによるグループ化があり、連続タイプです。
投稿: Tachyon | 2023年12月17日 (日) 09時51分